From Möbius Bands to Klein-Knottles

نویسنده

  • Carlo H. Séquin
چکیده

A construction of various immersed Klein bottles that belong to different regular homotopy classes, and which thus cannot be smoothly transformed into one another, is introduced. It is shown how these shapes can be partitioned into two Möbius bands and how the twistedness of these bands defines the homotopy type. Some wild and artistic variants of Klein bottles are presented for their aesthetic appeal and to serve as study objects for analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Moebius Bands to Klein-Knottles

The construction of various of Klein bottles that belong to different regular homotopy classes, and which thus cannot be smoothly transformed into one another, is formally introduced. For all cases it is shown how these shapes can be partitioned into two Moebius bands and how the twistedness of these bands defines the homotopy type. Some wild and artistic variants of Klein bottles are presented...

متن کامل

Möbius Bands with a Quasipositive Fibred Hole

We prove that every knot in the 3-space bounds an embedded punctured Möbius band whose other boundary component is a quasipositive fibred knot.

متن کامل

Dimer statistics on the Möbius strip and the Klein bottle

Closed-form expressions are obtained for the generating function of close-packed dimers on a 2M × 2N simple quartic lattice embedded on a Möbius strip and a Klein bottle. Finite-size corrections are also analyzed and compared with those under cylindrical and free boundary conditions. Particularly, it is found that, for large lattices of the same size and with a square symmetry, the number of di...

متن کامل

Finitized Conformal Spectra of the Ising Model on the Klein Bottle and Möbius Strip

We study the conformal spectra of the critical square lattice Ising model on the Klein bottle andMöbius strip using Yang-Baxter techniques and the solution of functional equations. In particular, we obtain expressions for the finitized conformal partition functions in terms of finitized Virasoro characters. This demonstrates that Yang-Baxter techniques and functional equations can be used to st...

متن کامل

Keizo Ushio’s Sculptures, Split Tori and Möbius Bands

Keizo Ushio is a leading international stone sculptor whose work has introduced split tori and Möbius bands to the world on a grand scale. Starting with a simple circular torus or with more elaborate twisting bands, he drills a large number of closely spaced holes to form two strands, which may or may not be connected, depending on the overall rotation of the cutting void. In the case of a toru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012